
Eagle I.O’s Course Take-aways:
Psychometrics

This course is taught in MSU’s I/O Psychology program

Course Objectives: Understand the fundamental concepts of psychological measurement &
learn how to practically apply them through the R programming language.

Reliability:
The stability of assessment scores across repeated

testing occasions.

Validity:
The extent to which assessment inferences are

considered appropriate.

● Face Validity = The degree to which the
instrument appears to measure what it
purports to measure.

● Construct Validity = How well the instrument
actually measures the construct it purports to
measure.

● Criterion Validity = The degree to which the
scores on the instrument correlate with an
outcome of interest.

● Content Validity = The degree to which the
instrument’s items adequately sample from
your construct’s content domain.

● Split-Half Reliability = The degree to which
participants’ scores on one half of the instrument
correlate with those same participants’ scores on
the other half of the instrument (always
accompanied by Spearman-Brown).

● Parallel Forms Reliability = The degree to which
a set of participants’ scores on one form of the
instrument correlate with the same participants’
scores on an alternative form of the instrument.

● Test-Retest Reliability = The degree to which
participants’ scores on the instrument correlate
with their scores on the same instrument
completed at a later time.

● Internal Consistency Reliability = The degree to
which the instrument’s items that are intended to
measure the same construct are responded to in
a similar manner. This is usually denoted by
Cronbach’s Alpha.

Key Terms

● Raw Score: A test score that does not reflect relative performance (e.g., there is no
acknowledgement or consideration given to how other respondents perform).

● Z-score: A standard score with a mean of zero and a standard deviation of 1. These scores can
range from -4 to 4.

● Standard Score: A test score that is expressed as the number of standard deviations either above
or below the mean, expressed in standard deviation units and dependent on a normative
distribution (aka “norm”).

● Percentiles: The percent of scores in a distribution that “lie below” a value. Percentile ranks range
from 1st (meaning a respondent only scored higher than 1% of participants), to 99th (meaning a
respondent scored higher than 99% of participants).

Types of Bias

Response Bias:
When the responses are at least partially attributable to systematic tendencies of the respondent or

response context rather than (or in addition to) the substantive construct.

Test Bias:
When one group of respondents’ true scores on a construct are misrepresented by the instrument,

compared to those of another group. There are two types of test bias.
● Construct Bias = When a test has different meanings for different groups based on

the construct that the test purports to measure.

● Predictive Bias = When a test predicts certain outcome criteria at differing levels of
accuracy for different groups.

● Extremity = Consistently overusing “extreme” response options, regardless of the
respondent’s true levels of the construct being measured.

● Social desirability = Responding in a way that presents the respondent as
socially desirable, regardless of the respondent’s true levels of the construct of
interest.

● Malingering = Responding in a way that exaggerates a respondent’s problem or
disability.

Contributors: Pasquale Tosto Paulina Wiedmann Ian Lee

● Acquiescence = Consistently endorsing or rejecting items without regarding the items’ content.

● Careless responding = Responding to items randomly or without regard for the items’ content.

More Key Terms

● Standard Deviation: The average distance of scores from the mean. It is the square root of the
variance.

● Variance: A measure of the degree of spread in a data set computed as the average of squared
deviations from the mean.

● Covariance: A measure of the degree to which two variables in a data set change together. It is an
unstandardized measure, as it is computed from raw scores. The standardized version is known as...

● Correlation: The direction and magnitude of the association between two variables in a data set. It
is a standardized measure, as it uses z-scores rather than raw scores, thus correlation statistics
range from -1 to 1 and are usually denoted by Pearson’s Correlation Coefficient.

Correlation Matrix Covariance Matrix

x y

x var(x) cov(x,y)

y cov(y,x) var(y)

x y

x cor(x,x) cor(x,y)

y cor(y,x) cor(y,y)

https://www.linkedin.com/in/pasquale-tosto-bbb02811b/
https://www.linkedin.com/in/paulina-wiedmann/
https://www.linkedin.com/in/ian-lee-career/

Frey, B. (2018). Split-Half Reliability. The SAGE Encyclopedia of Educational Research,
Measurement, And Evaluation. https://doi.org/10.4135/9781506326139.n653

Furr, R. Michael, and Verne R. Bacharach. Psychometrics: An Introduction. Second
edition, SAGE, 2014.

Middleton, F. (2021a, July 16). Types of reliability and how to measure them. Scribbr.
https://www.scribbr.com/methodology/types-of-reliability/

Middleton, F. (2021b, October 15). The four types of validity. Scribbr.
https://www.scribbr.com/methodology/types-of-validity/

Stephanie Glen. "Inter-rater Reliability IRR: Definition, Calculation" From
StatisticsHowTo.com: Elementary Statistics for the rest of us!
https://www.statisticshowto.com/inter-rater-reliability/

Stephanie Glen. "Parallel Forms Reliability (Equivalent Forms)" From
StatisticsHowTo.com: Elementary Statistics for the rest of us!
https://www.statisticshowto.com/parallel-forms-reliability/

Sources

https://www.statisticshowto.com/contact/
https://www.statisticshowto.com/
https://www.statisticshowto.com/inter-rater-reliability/
https://www.statisticshowto.com/contact/
https://www.statisticshowto.com/
https://www.statisticshowto.com/parallel-forms-reliability/

Psychometrics Takeaway R Codes

Pasquale Tosto, Paulina Wiedmann, & Ian Lee

Creating a Data Frame

In order to create a data frame, you must first create either your columns, or your rows. For the sake of this
tutorial, we will create columns first, using the concatenate function like so:

col_1 <- c(1, 2, 3, 4, 5)
col_2 <- c(5, 4, 3, 2, 1)
col_3 <- c(3, 2, 1, 4, 5)
col_4 <- c(4, 5, 1, 2, 3)

Now that our four columns have been created, it’s time to piece them together in a data frame using the
as.data.frame function, as well as the cbind function, and we will title our data frame, "frame":

frame <- as.data.frame(cbind(col_1, col_2, col_3, col_4))

And the resulting data frame will look like this:

Table 1: Our very basic data frame!

col_1 col_2 col_3 col_4
1 5 3 4
2 4 2 5
3 3 1 1
4 2 4 2
5 1 5 3

Now that our data frame has been created, we can call individual columns in order to use them for statistical
analyses. For example, if we wanted to look at the correlation between column 2 and column 4, we would
use the cor function for correlation, and we would call the columns using a dollar sign, like so:

cor(frame$col_2, frame$col_4)

And the resulting output will look like this; a nicely sized correlation of 0.5!

[1] 0.5

1

Let’s say you have items that are negatively worded, that is, items that need to be reverse coded in your
data frame. You can reverse code them by simply adding 1 to the number of numeric response options, and
subtracting the name of the column within your frame from that sum. Let’s try it for column 4 of your data
frame:

frame$col_4 <- 6 - frame$col_4

Now when we take a look at our data frame, you’ll notice that the values for column 4 have all been reverse
scored.

Table 2: Look at column 4’s values!

col_1 col_2 col_3 col_4
1 5 3 2
2 4 2 1
3 3 1 5
4 2 4 4
5 1 5 3

Alpha

In order to view important statistical qualities of a data frame, you use the alpha function within the psych
package. You start by installing the psych package using the following code:

install.packages("psych")

Next, you load the package in from your library using the following code:

library(psych)

Finally, you use the alpha function and enclose the name of your data frame within parentheses. For the
sake of this tutorial, we will use the mtcars data frame, columns 2 through 5, denoted with brackets. Table
3 shows item statistics, which are one of many types of vital statistics the alpha function provides.

alpha(mtcars[2:5])

Table 3: These are vital item statistics that the Alpha function
provides

n raw.r std.r r.cor r.drop mean sd
cyl 32 0.9237324 0.8810072 0.9092715 0.9222917 6.187500 1.7859216
disp 32 0.9731847 0.8585875 0.8694455 0.7944121 230.721875 123.9386938
hp 32 0.9104707 0.9416717 0.9179976 0.7931131 146.687500 68.5628685
drat 32 -0.6482843 -0.3719298 -0.6009034 -0.6499610 3.596563 0.5346787

2

Class Conversions

Sometimes you need to directly tell R how to classify your values. Most commonly, you will have to convert
character values into numeric values, or vice versa, so that R knows they are numbers and not characters.

Let’s use the following vector, "vecky", as an example, and convert a numeric vector into a character vector.
We will start by creating our vector.

vecky <- c(1, 1, 3, 5, 8, 13, 21)

Now, we will convert vecky into a character vector using the as.character() function:

vecky <- as.character(vecky)

In order to ensure that the vector has been converted to character, we use the class() or typeof() function
and enclose the name of the vector within parentheses:

class(vecky)

[1] "character"

Now that we have confirmed that our vector is a character vector, we will use the as.numeric() function
to convert vecky into a numeric vector:

vecky <- as.numeric(vecky)

Finally, we will use the class() function to confirm that our vector is indeed a numeric vector.

class(vecky)

[1] "numeric"

Oh, also, if you want to clear your entire global environment, i.e. remove all objects (vectors, data frames,
etc.) from your workspace, you can use the simple code below!

rm(list = ls())

3

Quick Views!

Let’s say we have a very large data frame, for example, mtcars, and we only want to see a snippet of the
beginning of the data. Here, we can use the head function, like so:

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Now, let’s say we only want to see the last parts of the dataframe. Here, we can use the tail function for
just the end:

tail(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

There is also a function you can use to compactly display the internal structure of a data frame or other
object in R, and that function is str .

str(mtcars)

’data.frame’: 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

4

Data Visualization

In order to better understand your data, it is often helpful to visualize it with a graphic representation! We
can use the extremely handy ggplot2 package for data visualization. As an example, let’s create a basic
scatterplot for two columns of the iris data set. We will start by installing the package onto our machines:

install.packages("ggplot2")

Next, you load the package in from your library using the following code:

library(ggplot2)

Next, we will use the following code to create a basic scatterplot of the Sepal.Length and Sepal.Width
columns. Note that adding a geom_point() call is what we use to specify that our data will be graphed as
a scatterplot.

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point()

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th

5

It should be noted that within the aes function inside the ggplot call, x denotes the column whose data
you want graphed on the x-axis, and y denotes the column whose data you want graphed on the y-axis.
You do not actually need to write "x" and "y", as the arguments are always in this order! Let’s use the
Petal.Width column as an example of this with a histogram rather than a scatterplot. Note that adding a
geom_histogram() call is what we use to specify that our data will be graphed as a histogram. Additionally,
histograms typically only take one column and are used to graph the frequency of each score.

ggplot(iris, aes(Petal.Width)) +
geom_histogram()

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

co
un

t

6

We will now demonstrate how to change the color of ggplot2 graphics, which is one of MANY different
aesthetic changes you can add to your data graphics. In order to change the color of our histogram bars
from the previous plot, we will use the fill function within the call of geom_histogram() to turn the bars
blue:

ggplot(iris, aes(Petal.Width)) +
geom_histogram(fill = "blue")

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

co
un

t

7

Finally, we will demonstrate how to plot your histogram with your data separated by a categorical variable,
which in the case of the iris dataset, will be the Species column. To do this, we simply add the color
argument within the call of aes, and set it equal to the categorical column of interest like so:

ggplot(iris, aes(Petal.Width, color = Species)) +
geom_histogram()

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5
Petal.Width

co
un

t

Species

setosa

versicolor

virginica

8

Z-scores

Because scale scores are typically simple means across a number of items, we can use the rowMeans function
to create a simple, averaged standard score column, and we will use our frame dataframe as an example:

frame$averages <- rowMeans(frame)

If we look at our frame, we will see it has an additional column that includes averaged scores for all cases:

Table 4: Our frame now has an averages column

col_1 col_2 col_3 col_4 averages
1 5 3 2 2.75
2 4 2 1 2.25
3 3 1 5 3.00
4 2 4 4 3.50
5 1 5 3 3.50

In order to create our z-scores, we make a new column and run scale on the column we just created.

frame$zscores <- scale(frame$averages)

Now, when we look at our frame, we will see that the newest column has our z-scores!

Table 5: Our frame now has a column for z-scores

col_1 col_2 col_3 col_4 averages zscores
1 5 3 2 2.75 -0.4714045
2 4 2 1 2.25 -1.4142136
3 3 1 5 3.00 0.0000000
4 2 4 4 3.50 0.9428090
5 1 5 3 3.50 0.9428090

Finally, we are going to create standard scale scores for a mean of 100 and a standard deviation of 15 using
the round function on the z-score column we just created like so:

frame$standard <- round((15 * frame$zscores) + 100)

Now, when we look at our frame, we will see that the newest column has our standard scale scores!

Table 6: Our frame now has a column for standard scale scores

col_1 col_2 col_3 col_4 averages zscores standard
1 5 3 2 2.75 -0.4714045 93
2 4 2 1 2.25 -1.4142136 79
3 3 1 5 3.00 0.0000000 100
4 2 4 4 3.50 0.9428090 114
5 1 5 3 3.50 0.9428090 114

9

Dealing with NA Values

Finally, we will show you how to deal with NA, or not applicable values from your R objects. First, we will
create a simple vector that has NA values already in it. Ordinarily we don’t want such values in our data,
but for the sake of this tutorial, we will create the following vector:

messed_up_vector <- c(NA, 3,4,5,6,7)

Uh-oh! That vector is all messed up! It has an NA value in it! What do we do?! In order to remove this
value from our vector, we use the following code:

messed_up_vector <- na.omit(messed_up_vector)

Now, if we inspect our vector, we will find that it is no longer messed up! So, we are going to rename it after
we inspect it:

head(messed_up_vector)

[1] 3 4 5 6 7

not_messed_up_vector <- messed_up_vector

More frequently, however, we will find that we need to remove NA values from dataframes while creating
scale score columns, as functions such as rowMeans will yield NA if there are NA values in the columns on
which the function is operating. Let’s construct the same dataframe that we made at the beginning of this
tutorial, but replace each 1 with an NA .

col_1 <- c(NA, 2, 3, 4, 5)
col_2 <- c(5, 4, 3, 2, NA)
col_3 <- c(3, 2, NA, 4, 5)
col_4 <- c(4, 5, NA, 2, 3)

messed_up_frame <- as.data.frame(cbind(col_1, col_2, col_3, col_4))

If we try to create a scale score column using rowMeans, we will have NA values in our scale score column.

messed_up_frame$scale <- rowMeans(messed_up_frame)

Table 7: Our scale column has NA values in it

col_1 col_2 col_3 col_4 scale
NA 5 3 4 NA

2 4 2 5 3.25
3 3 NA NA NA
4 2 4 2 3.00
5 NA 5 3 NA

10

In order to get around this issue, we can simply include the argument, na.rm = TRUE, within our call of
rowMeans, after inputting our dataframe like so:

messed_up_frame$scale <- rowMeans(messed_up_frame, na.rm = TRUE)

Now when we look at our dataframe, we will see that the scale score column is populated with numeric
values because they were computed with NA values exluded from calculations!

Table 8: Our scale column looks nice now!

col_1 col_2 col_3 col_4 scale
NA 5 3 4 4.00

2 4 2 5 3.25
3 3 NA NA 3.00
4 2 4 2 3.00
5 NA 5 3 4.33

11

	c031bd76-b5ae-4759-956a-448629df9271.pdf
	Creating a Data Frame
	Alpha
	Class Conversions
	Quick Views!
	Data Visualization
	Z-scores
	Dealing with NA Values

